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Abstract
We construct a kind of new multipartite entangled states of continuum variables,
which are related to unitary group U(n). Using the technique of integral within
an ordered product of operators we prove that such states make up a complete
representation in multimode Fock space. The new state can be generated by an
optical network whose operation on an incoming photon distributes the photon
among the outputs according to the unitary group transform. The potential use
of the new state in quantum teleportation is briefly discussed.

PACS numbers: 03.65.Ud, 42.50.Dv, 03.67.Mn

1. Introduction

In recent years entangled states have been applied to quantum computation, quantum
teleportation, quantum cryptography and quantum superdense coding [1–3]. In an entangled
quantum state, measurement performed on one part of the system provides information on
the remaining part, as first pointed out by Einstein, Podolsky and Rosen (EPR) [4] in their
famous paper arguing the incompleteness of quantum mechanics. EPR revealed the quantum
entanglement by considering nonlocal correlations between two particles due to the zero-
commutator between their relative position and total momentum, i.e., [X1 −X2, P1 +P2] = 0.

Recently, applications of quantum entanglement involved in entangled states of continuous-
variable have attracted much attention from physicists [5–8]. Quantum teleportation of
arbitrary coherent states has been realized experimentally with bipartite entanglement built
from two single-mode squeezed vacuum states combined at a beam splitter [9]. Enlightened
by EPR, the common eigenvector |η〉 of X1 − X2 and P1 + P2 in two-mode Fock space was
explicitly constructed [10, 11], it is

|η〉 = exp
[− 1

2 |η|2 + ηa
†
1 − η∗a†

2 + a
†
2a

†
1

]|00〉 (1)
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where η = 1√
2
(η1 + iη2) is a complex number, |00〉 is the two-mode vacuum state,

(
ai, a

†
i

)
, i =

1, 2, are two-mode Bose annihilation and creation operators in Fock space related to (Xi, Pi)

by

Xi = 1√
2

(
ai + a

†
i

)
Pi = 1√

2i

(
ai − a

†
i

)
. (2)

The |η〉 state obeys the eigenvector equations(
a1 − a

†
2

)|η〉 = η|η〉 (
a2 − a

†
1

)|η〉 = −η∗|η〉. (3)

It then follows from (2) and (3) that

(X1 − X2)|η〉 = η1|η〉 (P1 + P2)|η〉 = η2|η〉. (4)

Using the technique of integral within an ordered product (IWOP) of operators we have proved
that |η〉 satisfies the completeness relation∫

d2η

π
|η〉〈η| = 1 d2η ≡ 1

2
dη1 dη2 (5)

and possesses the orthonormal property

〈η′|η〉 = πδ(η − η′) δ(η∗ − η′∗). (6)

The Schmidt decomposition of |η〉 in momentum eigenstate |p〉i basis is

|η〉 = e−iη1η2/2
∫ ∞

−∞
dp|p + η2〉1 ⊗ | − p〉2 e−ipη1 Pi |p〉i = p|p〉i i = 1, 2. (7)

One may directly use the |η〉 state to discuss quantum teleportation [12], entanglement
swapping [13] and quantum dense coding [14]. One can also directly use |η〉 to reveal
the correlative amplitude–operational phase entanglement [15], where the operational phase
operator was introduced by the Mandel group in discussing an eight-port homodyne detector for
phase measurement [16]. Besides, it is remarkable that the well-known two-mode squeezing
operator [17]

exp
[
f
(
a
†
1a

†
2 − a1a2

)] ≡ S2 (8)

has a natural and simple representation in the |η〉 basis [18], i.e.,

S2 = 1

µ

∫
d2η

π
|η/µ〉〈η| µ = exp f (9)

no wonder that the two-mode squeezed state itself is an entangled state which entangles the
idle mode and signal mode as an outcome of a parametric-down conversion process in the
frequency domain [16]. It is encouraging that the ideal entangled state |η〉 can be constructed
by using a beam splitter. From [5–8] we know that the symmetric 50:50 beam splitter operates
on a pair of incoming modes: one is the zero-momentum eigenstate |p = 0〉1 and the other is
the zero-position eigenstate |x = 0〉2, the outgoing state is a bipartite entangled state, i.e.,

exp
[
π
(
a
†
1a2 − a

†
2a1

)/
4
]|p = 0〉1 ⊗ |x = 0〉2 = exp

[
a
†
1a

†
2

]|00〉. (10)

Then making a local oscillator displacement D(η) = exp
[
ηa

†
1 − η∗a1

]
,

D(η) exp
[
a
†
1a

†
2

]|00〉 = |η〉 (11)

the state |η〉 is obtained. Two interesting and important questions thus naturally arise: 1. How
to theoretically construct an n-mode entangled state of continuum variables, which is in form
as simple as possible and is qualified to make up a new quantum mechanical representation?
2. How to implement these new states experimentally? To our knowledge, an explicitly
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general form of multipartite entangled states of continuum variables in n-mode Fock space, as
a proper quantum mechanical representation, has not been reported in the literature earlier. To
answer these questions, in section 2 we first briefly review some properties of optical networks
related to the Un group (unitary group). Then in section 3 we shall construct n-mode entangled
states in Fock space explicitly which make full use of the property of the Un group. We also
derive the completeness relation of these states and calculate their inner product. Section 4 is
devoted to taking a tripartite entangled state as an example. In section 5 we discuss how to
use an optical multiport network to realize such a multimode entangled state. In section 6 we
briefly mention a protocol for teleporting the 3-mode continuous entangled state.

2. Brief review of properties of some optical devices

From (10) and (11) we learn that to realize an entangled state we need a selected unitary
state transform and to understand which physical system effects the desired operation on
incoming states. It is well known that the basic operation of passive optical devices, such as
beam-splitters, mirrors, optical fibres, mixers, lenses, phase shifter and interferometer, based
on quantum optics components, play the role of transforming a pre-assigned set of states into
another set. They are the tools of quantum coding and communication [19]. It is also well
known that photon correlation experiments are usually demonstrated by the linear multiport
(of which a beam splitter is the simplest). A multiport distributes any incoming photons
with a definite probability into the outputs. For example, Zeilinger and his collaborators [20]
considered a totally symmetric 2n-port to be a device that distributes a photon entering an
arbitrary input equally among the outputs. Thus we briefly review some properties of a linear
optical device. Let a quantum system be represented by a linear combination of single-photon
states

|ψ(0)〉j =
n−1∑

i

fia
†
i (0)|0, 0, · · · , 0〉 (12)

where fi is a set of numbers. Transferring the state (12) through a linear optical device, the
outgoing state is obtained by the application of a unitary transform U, whose role is

gi =
n−1∑
j=0

uijfj . (13)

The conservation of photon probability distribution demands
n−1∑
j=0

|gi |2 =
n−1∑
j=0

|fi |2 (14)

which implies that the optical transfer matrix uij must be a representation of the unitary group
element, possessing the unimodular property

n−1∑
j=0

uiju
∗
kj = δik. (15)

Correspondingly, the photon creation operator undergoes the transform

U(t)a
†
i (0)U−1(t) =

∑
j

uij (t) a
†
j (0) = a

†
i (t) (16)

U(t)|ψ(0)〉j =
∑

i

fia
†
i (t)|0, 0, . . . , 0〉 = |ψ(t)〉j (17)
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where the vacuum state is invariant under the U transform, and

U(t) =
∑

j

|ψ(t)〉jj 〈ψ(0)| = e−iHt . (18)

where H is the Hamiltonian describing the optical device. U(t) is provided by those optical
devices which play such basic operations. It is then of interest to inquire which types of
mode interactions are necessary to obtain a desired optical transfer matrix. In [21–24]
some prescriptions for obtaining Hamiltonian operator for n-port linear optical networks
are presented. In the following we shall use a unitary group related linear multiport to realize
n-mode entangled states of continuous variables.

3. New n-mode entangled states representation

The new n-mode entangled state we introduce is

|	ζ 〉u = exp

{
n−1∑
i=1

[
−1

2
|ζi |2 + a†

nuji

(
a
†
i − ζ ∗

i

)
+ ζia

†
i

]}
|	0〉 (19)

where 	ζ is an (n−1)-dimensional complex vector, uji is an element of unitary group U(n−1),
the subscript u of |	ζ 〉u denotes that the state is unitary group dependent, |	0〉 is the n-mode
vacuum state, from (15) we know

n−1∑
i=1

ujiu
∗
ji = δjj = 1. (20)

The form of |	ζ 〉u seems not very complicated. Obviously, when n = 2, i = j = 1, u11 = 1,

(19) reduces to the bipartite entangled state as in (2). Using the normally ordered form of the
vacuum state projector

|	0〉〈	0| = : exp


−

n∑
j=1

a
†
j aj


 : (21)

and the technique of integral within an ordered product (IWOP) of operators [25, 26] we can
prove the completeness relation (because in (19) the subscript j is not a summed index, we
can omit it in |	ζ 〉u in our later calculations),∫ n−1∏

i

d2ζ

π
|	ζ 〉uu〈	ζ | =

∫ n−1∏
i

d2ζ

π
: exp

{
n−1∑
i=1

[
−|ζi |2 + a†

nui

(
a
†
i − ζ ∗

i

)

+ ζia
†
i + (ai − ζi) u∗

i an + ζ ∗
i ai − a

†
i ai

]
− a†

nan

}
:

= : exp

{
n−1∑
i=1

[(
ai − a†

nui

)(
a
†
i − u∗

i an

)
+ a†

nuia
†
i + aiu

∗
i an − a

†
i ai

]
− a†

nan

}
:

= : exp

{
n−1∑
i=1

a†
nuiu

∗
i an − a†

nan

}
: = 1 (22)

where in the last step we have used (20). Note that although |	ζ 〉u is a n-mode state, the integral
is n − 1 fold. Further, by introducing the n-mode Glauber–Klauder coherent state [27, 28]

|	z〉 ≡ |z1, z2, . . . , zn〉 = exp

[
n∑

i=1

(
−1

2
|zi |2 + zia

†
i

)]
|	0〉 (23)
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we know

〈	z|	ζ 〉u = exp

{
−1

2

n∑
i=1

|zi |2 +
n−1∑
i=1

[
−1

2
|ζi |2 + z∗

nui(z
∗
i − ζ ∗

i ) + ζiz
∗
i

]}
(24)

and

u〈	ζ ′|	z〉 = exp

{
−1

2

n∑
i=1

|zi |2 +
n−1∑
i=1

[
−1

2
|ζ ′

i |2 + (zi − ζ ′
i )u

′∗
i zn + ζ ′∗

i zi

]}
. (25)

By virtue of the over-completeness relation
n∏

i=1

d2zi

π
|	z〉〈	z| = 1 (26)

we calculate the overlap of the new entangled states

u′ 〈	ζ ′|	ζ 〉u =u′

〈
	ζ ′
∫ n∏

i

d2zi

π
|zi, zn〉〈zi, zn|	ζ

〉
u

= f

∫ n−1∏
i

[
d2zi

π

] ∫
d2zn

π
exp

{
−

n∑
i=1

|zi |2 +
n−1∑
i=1

[z∗
nui(z

∗
i − ζ ∗

i )

+ ζiz
∗
i + (zi − ζ ′

i ) u′∗
i zn + ζ ′∗

i zi]

}

= f

∫ n−1∏
i

[
d2zi

π

]
exp

{
−

n−1∑
i=1

|zi |2 +
n−1∑
i=1

n−1∑
k=1

(z∗
i − ζ ∗

i )uiu
′∗
k (zk − ζ ′

k)

+
n−1∑
i=1

(ζiz
∗
i + ζ ′∗

i zi)

}

= f

∫ n−1∏
i

[
d2zi

π

]
exp

{
n−1∑
i=1

n−1∑
k=1

[−z∗
i (δik − uiu

′∗
k )zk

− z∗
i uiu

′∗
k ζ ′

k − ζ ∗
i uiu

′∗
k zk + ζ ∗

i uiu
′∗
k ζ ′

k + ζiδikz
∗
k + ζ ′∗

i δikzk]

}

= f

∫ n−1∏
i

[
d2zi

π

]
exp{−z∗(I − v)z̃ − z∗vζ̃ ′ − ζ ∗vz̃ + ζ ∗vζ̃ ′ + ζ z̃∗ + ζ ′∗z̃}

(27)

where f ≡ exp
[− 1

2

∑n−1
i=1 (|ζi |2 + |ζ ′

i |2)
]
, I is (n − 1) × (n − 1) unit matrix, for brevity in the

last line of (27) we have set

z∗ = (z1, z2, . . . , zn−1)
∗ ζ ∗ = (ζ1, ζ2, . . . , ζn−1)

∗ (28)

and we have defined

(v)ik ≡ uiu
′∗
k =




u1u
′∗
1 u1u

′∗
2 · · · u1u

′∗
n−1

u2u
′∗
1 u2u

′∗
2 · · · · · ·

· · · · · · · · · · · ·
un−1u

′∗
1 un−1u

′∗
2 · · · un−1u

′∗
n−1


 . (29)
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Using the integral formula [29]∫ n∏
i

d2zi

π
exp

{
−1

2
(z, z∗)

(
A

C

B

D

)(
z̃

z̃∗

)
+ (µν∗)

(
z̃

z̃∗

)}

=
[

det

(
C

A

D

B

)]−1/2

exp

[
1

2
(µν∗)

(
C

A

D

B

)−1 (
ν̃∗

µ̃

)]
(30)

we perform the integral in (27),

u′ 〈	ζ ′|	ζ 〉u = f

∫ N−1∏
i

[
d2zi

π

]
exp

{
−1

2
(z, z∗)

(
0 I − ṽ

I − v 0

)(
z̃

z̃∗

)

+ (ζ ′∗ − ζ ∗v, ζ − ζ ′ṽ)

(
z̃

z̃∗

)
+ ζ ∗vζ̃ ′

}

= f

[
det

(
I − v 0

0 I − ṽ

)]−1/2

exp

{
1

2
(ζ ′∗ − ζ ∗v, ζ − ζ ′ṽ)

×
(

I − v 0
0 I − ṽ

)−1
(

ζ̃ − vζ̃ ′

˜ζ ∗ν − ζ ′∗

)
+ ζ ∗vζ̃ ′

}

= f [det(I − v)]−1 exp

{
(ζ ′∗ − ζ ∗v)

1

I − v
(ζ̃ − vζ̃ ′) + ζ ∗vζ̃ ′

}
. (31)

4. A concrete example

For example, when n = 3, we take

	ζ = (η, σ ) 	ζ ′ = (η′, σ ′) u1 = cos θ u2 = sin θ 0 < θ � 2π (32)

where η, σ, η′ and σ ′ are all complex numbers, u1 and u2 are elements of the unitary group
U2. Then equation (19) becomes

|	ζ 〉u → |η, σ 〉θ = exp
{− 1

2 (|η|2 + |σ |2) + a
†
3

(
a
†
1 − η∗) cos θ

+ a
†
3

(
a
†
2 − σ ∗) sin θ + ηa

†
1 + σa

†
2

}|000〉 (33)

which is a new tripartite entangled state. In this case, equation (31) reduces to

θ ′ 〈η′, σ ′|η, σ 〉θ = 1

1 − cos(θ − θ ′)
exp

{
1

1 − cos(θ − θ ′)
[cos θ ′(η − η′) + sin θ ′(σ − σ ′)]

× [cos θ(η′∗ − η∗) + sin θ(σ ′∗ − σ ∗)] + W

}
(34)

where W ≡ η′∗η + σ ′∗σ − 1
2 (|η|2 + |σ |2 + |η′|2 + |σ ′|2), its detailed derivation is shown in the

appendix. In particular, when θ ′ = θ , (34) becomes

θ 〈η′, σ ′|η, σ 〉θ = lim
ε→0

exp

{
−1

ε
| cos θ(η − η′) + sin θ(σ − σ ′)|2 + W

}
= πδ[cos θ(η − η′) + sin θ(σ − σ ′)] δ [cos θ(η∗ − η′∗) + sin θ(σ ∗ − σ ′∗)] eW

(35)

where we have used the limiting formula of the δ-function

lim
ε→0

exp

{
−1

ε
|α|2

}
= πδ(α)δ(α∗). (36)
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Equation (35) indicates that |η, σ 〉θ is a partly orthonormal state. To see the entanglement
involved in |η, σ 〉θ explicitly, we write η = η1 + iη2, σ = σ1 + iσ2 and make the Schmidt
decomposition

|η, σ 〉θ = 1

4π2

∫ ∫ ∞

−∞
du dv D(u, v) e−iuη1−ivσ1 |(u + η2)/

√
2〉1

⊗ |(v + σ2)/
√

2〉2 ⊗ |[(σ2 − v) sin θ + (η2 − u) cos θ ]/
√

2〉3 (37)

where the three single-mode states all belong to the set of momentum eigenstates, and

D(u, v) = exp

{
−1

4
[(η2 − u) sin θ − (σ2 − v) cos θ ]2

}
. (38)

5. Physical implementation of | �ζ〉u

In this section we discuss a protocol of implementing the n-mode entangled state |ζ 〉u
experimentally with the use of an optical network. Supposing we have already a state
exp

[
a
†
nb

†]|	0〉, which entangles mode a
†
n and mode b† (an ideal beam splitter operation applied

to a momentum-squeezed vacuum state
(
mode a

†
n

)
and a position-squeezed vacuum state

(mode b†) can yield such a state, see the explanation just before equation (10)). Letting
the b†-mode photon entering an n-port optical network that distributes the photon among the
outputs according to the unitary transform,

Ub†U−1 =
n−1∑
i=1

ujia
†
i

n−1∑
i=1

ujiu
∗
ji = δjj = 1 (39)

thus the outgoing state together with the a
†
n-mode is

U exp
[
a†

nb
†]|	0〉 = exp

[
a†

n

n−1∑
i=1

ujia
†
i

]
|	0〉. (40)

Then making a local oscillator displacement
∏n−1

i Di(ζi) = ∏n−1
i exp

(
ζia

†
i − ζ ∗

i ai

)
to effect

the outgoing state, we obtain

n−1∏
i

Di(ζi) exp

[
a†

n

n−1∑
i=1

ujia
†
i

]
|	0〉 = exp

{
n−1∑
i=1

[
−1

2
|ζi |2 + a†

nuji

(
a
†
i − ζ ∗

i

)
+ ζia

†
i

]}
|	0〉 = |	ζ 〉u.

(41)

Hence the ideal n-mode entangled state |	ζ 〉u can be realized.

6. Application of the new entangled states

In this section we briefly mention some applications of the new entangled states. Let us still
take |η〉 and |η, σ 〉θ for example. From equations (33) and (22) we know∫

d2η d2σ

π2
|η, σ 〉θθ 〈η, σ | = 1. (42)

Thus any 3-mode state | 〉123 can be expanded as

| 〉123 =
∫

d2η d2σ

π2
G(η, σ, θ)|η, σ 〉θ123 (43)
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where G(η, σ, θ) is the expansion coefficient

G(η, σ, θ) =θ 〈η, σ |〉123. (44)

If Alice is able to teleport the 3-mode state |η, σ 〉θ123 to Bob, then she can teleport | 〉123

since it can be expanded by the set of |η, σ 〉θ . Assume Alice shares a quantum channel
composed of three bipartite entangled states, |ηα〉45 ⊗|ηβ〉67 ⊗|ηγ 〉89, with Bob, which means
that Alice owns particles 4, 6 and 8, while Bob owns 5, 7 and 9. Then the total initial
state is |η, σ 〉θ123 ⊗ |ηα〉45 ⊗ |ηβ〉67 ⊗ |ηγ 〉89. Alice makes a joint measurement denoted by
|η′〉1414〈η′| ⊗ |η′′〉2626〈η′′| ⊗ |η′′′〉3838〈η′′′| and then informs Bob of the data η′, η′′ and η′′′ via a
classical channel. Then Bob can reconstruct the 3-mode entangled state |η, σ 〉θ in mode 579
by a suitable local unitary transform.

In summary, enlightened by the construction of the bipartite entangled state |η〉, we
have constructed a kind of multipartite entangled state of continuum variables. The explicit
form of this state in n-mode Fock space seems not very complicated, so it can be handled
mathematically without much difficulty. Using the IWOP technique we have shown that such
states |	ζ 〉u make up a complete representation in multimode Fock space. The |	ζ 〉u state can
be generated by an optical network whose operation on an incoming photon distributes the
photon among the outputs according to the unitary group transform. The potential use of the
new state in quantum teleportation is discussed briefly.
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Natural Science Foundation of China under grant 10175057.

Appendix

To derive equation (34), we note that (29) and (32) yield

v =
(

cos θ

sin θ

)
(cos θ ′, sin θ ′) =

(
cos θ cos θ ′ cos θ sin θ ′

sin θ cos θ ′ sin θ sin θ ′

)
vv = cos(θ − θ ′)v (45)

and

(I − v)−1 = G

(
1 − sin θ sin θ ′ cos θ sin θ ′

cos θ ′ sin θ 1 − cos θ cos θ ′

)
G ≡ 1

1 − cos(θ − θ ′)
. (46)

Due to

(cos θ ′, sin θ ′)
(

1 − sin θ sin θ ′ cos θ sin θ ′

cos θ ′ sin θ 1 − cos θ cos θ ′

)
= (cos θ ′, sin θ ′)(

1 − sin θ sin θ ′ cos θ sin θ ′

cos θ ′ sin θ 1 − cos θ cos θ ′

)(
cos θ

sin θ

)
=
(

cos θ

sin θ

) (47)

we have

v(I − v)−1 = (I − v)−1v = Gv v
1

I − v
v = Gvv = G cos(θ − θ ′)v

det(I − v)= G−1. (48)

Hence equation (31) reduces to

u′ 〈	ζ ′|	ζ 〉u → θ〈η′, σ ′|η, σ 〉θ = f G exp

{
G[ζ ∗v(ζ̃ ′ − ζ̃ ) − ζ ′∗vζ̃ ′] + ζ ′∗ 1

In − v
ζ̃

}
. (49)
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Making substitutions f → exp
[− 1

2 (|η|2 + |σ |2 + |η′|2 + |σ ′|2)],
ζ ∗v(ζ̃ ′ − ζ̃ ) → cos θ cos θ ′(η′ − η)η∗ + cos θ sin θ ′(σ ′ − σ)η∗

+ sin θ cos θ ′(η′ − η)σ ∗ + sin θ sin θ ′(σ ′ − σ)σ ∗ (50)

ζ ′∗vζ̃ ′ → cos θ cos θ ′η′∗η′ + sin θ sin θ ′σ ′∗σ ′ + cos θ sin θ ′η′∗σ ′ + sin θ cos θ ′σ ′∗η′ (51)

and

ζ ′∗ 1

I − v
ζ̃ → G(η′∗, σ ′∗)

(
1 − sin θ sin θ ′ cos θ sin θ ′

cos θ ′ sin θ 1 − cos θ cos θ ′

)(
η

σ

)
(52)

into (A5) we reach to (34).
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